a2 United States Patent

Bairavasundaram et al.

US009274838B2

US 9,274,838 B2
Mar. 1, 2016

(10) Patent No.:
(45) Date of Patent:

(54) DYNAMIC INSTANTIATION AND
MANAGEMENT OF VIRTUAL CACHING

APPLIANCES
(75) Inventors: Lakshmi Narayanan
Bairavasundaram, Sunnyvale, CA
(US); Gokul Soundararajan,
Sunnyvale, CA (US); Vipul Mathur,
Karnataka (IN); Kaladhar Voruganti,
San Jose, CA (US)
(73) Assignee: NetApp, Inc., Sunnyvale, CA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1069 days.
(21) Appl. No.: 13/334,689
(22) Filed: Dec. 22,2011
(65) Prior Publication Data
US 2013/0166724 Al Jun. 27,2013
(51) Imt.ClL
HO4L 12/751 (2013.01)
HO4L 12/803 (2013.01)
GO6F 9/50 (2006.01)
GO6F 12/08 (2006.01)
GO6F 11/07 (2006.01)
HO4L 12724 (2006.01)
GO6F 11/34 (2006.01)
(52) US.CL
CPC GO6F 9/5016 (2013.01); GO6F 9/5077
(2013.01); GO6F 11/073 (2013.01); GO6F
12/0806 (2013.01); HO4L 41/0816 (2013.01);
HO4L 41/0896 (2013.01); GO6F 11/3409
(2013.01)
(58) Field of Classification Search

CPC HO4L 41/0816; HO4L 41/0896; HOAL

REDUGING SLG VIOLATIONS 804

41/0823; HO4L 67/2842; GOGF 17/30132;
GOG6F 12/08; GOG6F 12/0806; GOGF 12/0893;
GO6F 11/073; GOGF 9/5077; GOGF 9/45533
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
8,489,995 B2* 7/2013 vonEickenetal. 715/735
8,769,202 B1* 7/2014 Soundararajan et al. 711/118
8,898,664 B2* 11/2014 Bhandarietal. 718/1
8,924,658 B1* 12/2014 Bairavasundaram et al. 711/154
2008/0262890 Al* 10/2008 Korupoluetal. 705/8
2011/0153770 Al* 6/2011 Antani et al. .. 709/208
2012/0036325 Al* 2/2012 Mashtizadeh et al. 711/118
2013/0086324 Al* 4/2013 Soundararajan et al. T11/122

* cited by examiner

Primary Examiner — Aaron Strange
(74) Attorney, Agent, or Firm — Gilliam IP PLLC

&7

It is detected that a metric associated with a first workload has
breached a first threshold. It is determined that the first work-
load and a second workload access the same storage
resources, wherein the storage resources are associated with a
storage server. It is determined that the metric is impacted by
the first workload and the second workload accessing the
same storage resources. In response to a determination that
the metric is impacted by the first workload and the second
workload accessing the same storage resources, a first virtual
cache appliance is instantiated and one of the first workload or
the second workload is routed through the virtual cache appli-
ance. Routing one of the first workload or the second work-
load through the first virtual cache appliance causes the first
virtual cache appliance to cache data associated with the
storage resources.

ABSTRACT

34 Claims, 11 Drawing Sheets

US 9,274,838 B2

Sheet 1 of 11

Mar. 1, 2016

U.S. Patent

423
¥ITIOYLINOD VOA

OET HOSIAMIdAH

807
INTITO

d3TI0HINOD
ONIZIS 3HOVD

¥ET

1 "9l

05T ¥3AY3S ILNAINOD

443
HITIOYINOD YOA

201
IN3D

ZET YOA

0T ¥3AY3S 3L1NdNOD

|

joe,

—07) QYO TIIOM-»~

1
44}

avOTHIOM

\

T avomiHom

/

¥or

AINFITS

9T
HITI0YLNOD YOA

i
d3TI0HLINOD
ONIZIS FHOVD

[423
3JHOVYD

01T H3IAYIS IDVHOLS

U.S. Patent Mar. 1, 2016 Sheet 2 of 11 US 9,274,838 B2

{COMPUTE SERVERS 210 '
: s
1
t [SERVER 220 SERVER 230 ;
= e
i
: v !
. SR - |
) ¥ ' '
; WM i VCA i WM VM |
! 222 224 ! 232 234 !
M]
1 ! : 1
e]
: ! * :
: I i
! | S8D 226 H
L}
1 I i
i i
' | J
_________ TS S VSO WSS S
252 258 254 256
lm e]
|
|
VCA CONTROLLER
260 ,J__L_V _________ R J— Y. .
' G @ @ ' ‘ B E I
]] | 1
t] i t
1] {]
| l : i
| DISKS 242 ; i DISKS 244 t
e e e - 4 N e e e e - 4
STORAGE SERVER 240

FIG. 2

U.S. Patent Mar. 1, 2016 Sheet 3 of 11

VCA CONTROLLER 300

SLO MONITOR 310

SERVICE LEVELS
312

STATISTICS
314

ANALYZER 320

VIOLATION DETECTION
322

SOLUTION CREATION
324

SOLUTION SELECTION
326

SOLUTION EXECUTION 330

CACHING CHANGE
332

APPLICATION REROUTING
334

CACHE WARM-UP
336

FIG. 3

US 9,274,838 B2

US 9,274,838 B2

Sheet 4 of 11

Mar. 1, 2016

U.S. Patent

¥ OId
YD D e G S Y S W e &Y OSSO R SR S G I SR S b AR e SR SD ED S 0D 55 A% w - - e S G S S S - e mn -
1 H i 1 “\
' ' H 27 04N ! !
i 7 L U 1SOH ONY QYO THHOM — “ ' p—
1 NOLLYLLNV.SNI i
N NOILOITIS ISOH | ! ' 49018 038300V
m (¥OA) IHOVO ! m - m | AININO3
I H ' 785 3215 IHOVD ' ;
i ! ' ANV QYO THHOM | ! s
] 1

m AN%‘ H ” s m " SIAVWILST SSM

1
) ONLLNOYTY ! ' 4 NOLLOT TS i i
| NOLLYOrddY (| NOLOTHES IHOVO NOLLT0S " m) ,ﬁo
H 1 : ir b i
! H ! WV $321S '] vy
m] ! y 3HOVD ! m
| - i TEF SOLLSIMALOVYVHD
L 77 m i o5 " — o _N_mﬂ«. 0 ! i avODRIOM
[} [} - e o - ' 1
' “ ! T SAVODINOM “ i s
H ' : FIVIHOVD i : NOLLYZIILO
1 [}]
“ T ! i wwmoh_mumo W ! ' 304N0S3Y
i | VAONSY 3HOVD] ' Ewﬂw_mm__% . ! ! I

]]
' ' I H 1 253
H ! @FsaHovD - o~ 1
; : " AUYAIONYD i ' T 3
1 ¥ 1 e [H -
i ! i 0 H 1 chv

t et J—
1 H 1 (747 s 1 oLy Q18
i ' P R TRETE
" b NOILOA130 oy k= : Nowdaa (1

i NOLLYZITLLNNIANN INODG 1 FF QYO DINOM | NOLLYIOIA 078
i ' ‘ M | L0 |
1 H] :
\ g% NoLLNOA ! \ TO0F ONINNY1d ONY SISATYNY ' 705 ONIIOLINOW
| PV ——— - N e e - e = - - - - L e e e L L L L L L T T ey

1
/

U.S. Patent Mar. 1, 2016 Sheet 5 of 11 US 9,274,838 B2

CREDUCING sLo v10LAT10N@

DEFINE SLO FOR WORKLOADS 502

Y

MONITOR PERFORMANCE METRIGS RELATED TO
SLO FOR WORKLOADS 504

¥

OBTAIN WORKLOAD CHARACTERISTICS 5068

‘SLO VIOLATION 0
m

YES

J 3

DETERMINE IF WORKLOAD INTERFERENCE EXISTS
THAT COULD AFFECT PERFORMANCE METRIC 510

o

IDENTIFY CACHEABLE WORKLOADS 516

y ‘
CALCULATE EXPECTED EFFECT OF CAGHE SiZE
DETERMINE SLO VIOLATION SOLUTION 514 CHANGE 518
A *
DETERMINE SOLUTION BASED ON CALCULATED
EXPECTED EFFECTS 520

IMPLEMENT CACHING CHANGE 524

U.S. Patent

Mar. 1, 2016 Sheet 6 of 11

IMPROVING RESQURCE UTILIZATION §00

DEFINE SLO FOR WORKLOADS 802

v

MONITOR PERFORMANCE METRICS RELATED TO |

51O FOR WORKLOADS 604 -

y

OBTAIN WORKLOAD CHARACTERISTICS 606

v

DETERMINE IF ALLOCATED RESOURCES ARE
UNDERUTILIZED 608

UNDERUTILIZATION?
810

YES

v

IDENTIFY CANDIDATE VCAs FOR REDUCTION OR
REMOVAL 812

AT LEAST ONE CANDIDATE?
614

YES
¥

CALCULATE EXPECTED EFFECT OF CACHE
REDUCTION/REMOVAL 616

y

DETERMINE SOLUTION BASED ON CALCULATED
EXPECTED EFFECTS 618

Y

IMPLEMENT CACHING CHANGE 620

FIG.6

US 9,274,838 B2

US 9,274,838 B2

Sheet 7 of 11

Mar. 1, 2016

U.S. Patent

OTZ NI9RIO

N

[axsay

SN
SIZ3INNTI0A

L9

OFZ 30VHOLS

¥z
HITIOYLINOD VIA

424

YIANIS JOVHOLS

._
i 2L FYMOYVH !
! “
OEZ LNGINOMIANS | | TGZ INGWNOUIANT | | 097 LNJWNOHIANT
' 57 i i 78 i i L :
! YITIOHLNOD ¥OA | { NITICUINOD VOA | i MITIOULNOD VA |
lecccc e mmm-- i .] P,]
78T YOSIAYIAAH 5L HOSIANIJAH 791 YOSIAYIAAH
I men 1
]_Houmsa |] HoumsA | n HOLIMSA _
[sa]
S4A

_ SdA _

TOULNOD
IOVIOLS

s4 | loud |

FELYOA

\
9 &
(aav)

B

N

RN
Q

'/

T
olola
&) @)

ddV}l [iddv

US 9,274,838 B2

Sheet 8 of 11

Mar. 1, 2016

U.S. Patent

8 9l
058 H3IAVT TYOISAHd
98 3OVHOLS
WO 7w | | om o
agh | see | o aA sng
e T T
] 1
_ 15
% AMOWEW _| QWNMm _| wmm
HITIONINGD
JHOVD ILIHM =OvHOLS
P8 S4A T7% HOSIAYIJAH T8 HOLIMSA
- - 4 - ‘ -
GE8 b2 TE8 pas] 1E8
(5 30WN0LS gg3owiols | LI juwn soig WY ndo 9N
w001 MHOMLIN
DB HIAYT 30IA30 TYNLYIA
w5 m || w || @ | | @ | |mmous| | T
WVHANA AYQ HOLS 13N 39VHOLS aivy SO 10¥d SIOMLIN ¥IANA
028 VoA
OT8 INIHOVI TYNLYIA

U.S. Patent Mar. 1, 2016 Sheet 9 of 11 US 9,274,838 B2
930 430 930 =
l STORAGE SERVER 910A l STORAGE SERVER 9108 l
CLIENT VCA VCA CLIENT
902 CONTROLLER CONTROLLER 902
2804 2608
DISK| o o « | DISK DISK| « o « | DISK
202A 2924 2028 9528
STORAGE 950A STORAGE 9508
920
NODE 910A /
M-HOST RDB
VCA 924A 928A
CONTROLLER
980A
N-MODULE D-MODULE DISK
\\ / / \
CLUSTER CLUSTER
CLIENT SWITCHING SWITCHING
902 NES’&?RK FABRIC FABRIC
940 940
7 AN
N-MODULE D-MODULE
B 9268 — <
VCA b
CONTROLLER DISK | e oo | DISK
9808 M-HOST RDB 9528 9528
9248 9268
NODE 9108 STORAGE 9508

FIG.9B

U.S. Patent Mar. 1, 2016 Sheet 10 of 11 US 9,274,838 B2

1000
MEMORY 1010
OPERATING
PROCESSOR SYSTEM Cgh?gORLE
1002 1014 1012
1050
r“"“["“
VCA NETWORK ! E\%Jgggg i STORAGE
CONTROLLER ADAPTER | o | ADAPTER
1060 1020 ; - 1040
i 1030 !
TO/FROM TO/FROM TOFROM
NETWORK SWITCHING STORAGE
960 FABRIC v 950
940

FIG. 10

U.S. Patent

2

MULTI
PROTOCOL
ENGINE

125

M-HOST

Mar. 1, 2016 Sheet 11 of 11 US 9,274,838 B2
CF PROTOCOL
N-MODULE 1110 170 D-MODULE 1150
Ao A
N r Y
N
CF INTERFACE RIS
1140A / CF INTERFACE

ey 11408
DAFS SCSI TARGET
118 nFs | ciFs | wrrp | MODULE 1135 FLESYSTEM

v 120 | 12z | U2 | eeg 160
1126 1128 —_— STORAGE
L SERVER
TCP | UDP TCP 1165
1116 1115 1116 RAID SYSTEM
FC 1180
P P 10
1114 114
DISK DRIVE
A“é'é?é\s MEDIA ACCESS SYSTEM
1112 1190
12 — J
CLUSTER SERVICES SYSTEM
1136
PERFORMANCE MONITOR
102
VCA SOLUTION SYSTEM
1103

FIG. 11

US 9,274,838 B2

1
DYNAMIC INSTANTIATION AND
MANAGEMENT OF VIRTUAL CACHING
APPLIANCES

FIELD

Embodiments described are related generally to manage-
ment of networked storage, and embodiments described are
more particularly related to managing a multi-tiered caching
system in a virtualized environment.

COPYRIGHT NOTICE/PERMISSION

Portions of the disclosure of this patent document can
contain material that is subject to copyright protection. The
copyright owner has no objection to the reproduction by
anyone of the patent document or the patent disclosure as it
appears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyright rights whatso-
ever. The copyright notice applies to all data as described
below, and in the accompanying drawings hereto, as well as to
any software described below: Copyright© 2011, NetApp,
Inc., All Rights Reserved.

BACKGROUND

Data for companies or other organizations is commonly
stored in networked storage. The networked storage and its
associated compute resources can be referred as a data center.
The resources of a data center such as storage and access
bandwidth are limited. Thus, a common goal for a data center
is to improve utilization of the resources of the networked
storage, to improve storage utilization and access throughput.
Data access to storage is typically slow relative to computer
processing speeds. There may be applications within the
company or organization that generate large workloads, mak-
ing many access requests to the data center. Additionally, the
number of workloads and the number of requests for each
workload can vary significantly over time. Frequently there
are levels of services that are either guaranteed or at least
expected for workloads accessing the networked storage.

Workloads accessing data from networked storage often
have performance requirements for such access; commonly
referred to as service level objectives (SLOs). There is an
apparent conflict in a system that has dynamic behavior
between providing high resource utilization and meeting ser-
vice level requirements. If an administrator allocates enough
resources to guarantee the needs of service level require-
ments, the allocation of resources generally results in low
resource utilization when workload requests are low. If an
administrator allocates fewer resources to try to achieve
higher resource utilization, the system may frequently violate
service level objectives for the workloads. Furthermore, con-
figuring resource allocation to be dynamic based on historical
resource utilization only allows dynamism for general trends
of work, and does not address specific workload requests.
Such a dynamic system would still be unable to respond to
dynamic shifts in workloads, especially if those shifts are
outside expected historical trends.

SUMMARY

A service level objective (SLO) violation is detected for a
workload of a networked storage system, based on a perfor-
mance metric not being satisfied for the workload. In
response to detecting the SLO violation, a controller deter-
mines that changing a level of caching at a node of the net-

10

15

20

25

30

35

40

45

50

55

60

65

2

worked storage system will improve the performance metric
for the workload. The controller implements the change by
adjusting an operation of a virtual cache appliance (VCA) of
the networked storage system. The adjusting can be instanti-
ating a new VCA, or adjusting the level of caching at an
existing VCA. The adjusting can be for caching related to the
workload itself, or it can be caching for an interfering work-
load.

BRIEF DESCRIPTION OF THE DRAWINGS

The following description includes discussion of figures
having illustrations given by way of example of implementa-
tions of embodiments described. The drawings should be
understood by way of example, and not by way of limitation.
Asused herein, references to one or more “embodiments” are
to be understood as describing a particular feature, structure,
or characteristic included in at least one implementation.
Thus, phrases such as “in one embodiment™ or “in an alternate
embodiment” appearing herein describe various embodi-
ments and implementations, and do not necessarily all refer to
the same embodiment. However, they are also not necessarily
mutually exclusive.

FIG. 1 is a block diagram of an embodiment of a storage
system with a storage server and multiple compute servers
that can dynamically adjust caching in the system.

FIG. 2 is a block diagram of an embodiment of a virtual
caching adjustment at a compute server to cure a service level
objective violation.

FIG. 3 is a block diagram of an embodiment of a virtual
cache appliance controller.

FIG. 4 is a block diagram of an embodiment of virtual
cache appliance management by separate phases including
monitoring, analysis and planning, and execution.

FIG. 5 is a flow diagram of an embodiment of a process for
reducing service level objective violations.

FIG. 6 is a flow diagram of an embodiment of a process for
removing cache resources when resource utilization is low.

FIG. 7 is a block diagram of an embodiment of a storage
server coupled to a virtual cache appliance instance.

FIG. 8 is a block diagram of an embodiment of a virtual
storage server.

FIG. 9A illustrates a network storage system in which
virtual cache appliance management can be implemented.

FIG. 9B illustrates a distributed or clustered architecture
for a network storage system in which virtual cache appliance
management can be implemented in an alternative embodi-
ment.

FIG. 10 is a block diagram of an illustrative embodiment of
an environment of FIGS. 9A and 9B in which virtual cache
appliance management can be implemented.

FIG. 11 illustrates an embodiment of the storage operating
system of FIG. 10 in which virtual cache appliance manage-
ment can be implemented.

Descriptions of certain details and embodiments follow,
including a description of the figures, which can depict some
or all of the embodiments described below, as well as discuss-
ing other potential embodiments or implementations of the
inventive concepts presented herein.

DETAILED DESCRIPTION

As described herein, a networked storage system includes
a storage server and at least one compute server. At least one
compute server supports a dynamically resizable virtual
cache appliance (VCA). The storage system includes VCA
management components (collectively, a VCA controller)

US 9,274,838 B2

3

that monitor, analyze, and execute VCA adjustments to
dynamically respond to service level objective (SLO)
requirements of the storage system. In one embodiment, the
VCA management components can be implemented on a
single hardware and/or virtual device of the storage system. In
another embodiment, the VCA management components are
distributed in the storage system over multiple hardware
devices and/or virtual devices of the storage system.

The VCA management monitors performance with respect
to workloads in the storage system by monitoring one or more
performance metrics for each workload. If a performance
metric is not being satisfied for a workload, the VCA man-
agement determines an SLO violation has occurred. In
response to the detected SLO violation, the VCA manage-
ment performs computations related to determining if cach-
ing changes will improve the performance metric, and thus
improve or cure the SLO violation. When the VCA manage-
ment determines that changing caching in the storage system
will improve the performance metric, the VCA management
adjusts an operation of VCA. The adjusting can be instanti-
ating a new VCA, or adjusting the level of caching at an
existing VCA. The adjusting can be for caching related to the
workload itself, or it can be caching for an interfering work-
load. Additionally, when monitoring mechanisms detect that
a VCA is no longer needed, adjusting an operation of a VCA
can include removing the VGA, or adjusting the level of
caching at the VCA. The storage system thus monitors work-
load performance and resource utilization, and dynamically
adjusts operation based on the monitoring; thus, the storage
system dynamically responds to changes in workload.

FIG. 1 is a block diagram of an embodiment of a storage
system with a storage server and multiple compute servers
that can dynamically adjust caching in the system. System
100 is a storage server system or networked storage system
that provides data access from storage attached (not shown) to
storage server 110 to clients that connect from host 140. The
clients make data access requests via applications. The data
access requests can also be referred to as /O (input/output)
requests, and can be to read and/or write data to the storage
managed and served by storage server 110.

System 100 illustrates a storage system with dynamically
adjustable caching. In one embodiment, system 100 is a
multi-tiered cache system, with a hierarchy of cache levels or
cache tiers that can communicate with each other. Cache 112
is a lowest tier or tiers of cache in the cache hierarchy. As used
herein, “tier” refers to the separation of the control logic
within the multi-tiered cache system. FEach tier includes a
caching device, which includes storage or memory and a
feedback/sizing controller or logic 116 to determine how
caching is to be performed at the specific tier. It will be
understood that alternative terms such as “level” or “layer”
could also be used to refer to the separate tiers.

White different levels of caching are possible, examples of
cache tiers include cache 112 of storage server 110, and VCA
132 of compute server 140. In one embodiment, cache 112
can be implemented as a storage server SSD (solid state drive)
cache tier, referring to an SSD or flash device on storage
server 110, and a storage server buffer cache tier. VCA 132
could also be separated into multiple tiers. The different cache
tiers can be shared across clients and workloads, or dedicated
to a specific client or workload.

The storage server connects to VCA 132 via network 120.
Network 120 can be any type or combination of local area
networks or wide area networks. VCA 132 is instantiated on
hypervisor 130 that is on compute server 140. Alternatively,
VCA 132 can be instantiated on another hypervisor (not
shown), which is on a compute server that is physically close

25

30

40

45

55

4

to compute server 140. In one embodiment, compute server
140 hosts hypervisor 130. A compute server can be physical
server with a hypervisor, or a server instance of networked
hardware. Physically close refers generally to the idea that a
local area network or a local connection is used to connect the
devices, rather than connecting over a wide area network. As
used herein, instantiation refers to creating an instance or a
copy of a source object or source code. The source code can
be a class, model, or template, and the instance is a copy that
includes at least some overlap of a set of attributes, which can
have different configuration or settings than the source. Addi-
tionally, modification of an instance can occur independent of
modification of the source.

VCA 132 is typically populated as compute server 140
reads data from the source storage server 110. On the first read
of any data, the cache fetches data from storage server 110,
stores itin VCA 132 and forwards itto client 108. As the reads
pass through VCA 132, the cache fills up. Any subsequent
access of the data that is stored in VCA 132 can be immedi-
ately served from the dynamic cache, which reduces the
roundtrip time or the latency. In one embodiment, VCA 132
acts like a write-through cache, where all writes from com-
pute server 140 are passed directly to storage server 110. Only
when storage server 110 responds to a write request, VCA
132 acknowledges the result to compute server 140 or other
cache tiers—e.g., RAM (buffer cache) and SSD or flash.
Similarly to VCA 132, cache device 112 within storage server
110 caches data to serve to VCA 132, avoiding access to
storage resources for data that is cached within storage server
110.

Storage server 110 further includes cache sizing controller
114, which represents the control logic of storage server 110
related to determining when a workload characteristic change
occurs, or when the working set size has changed, whether
there is overlap or interference between working sets of two
workloads, and when to propagate these changes to cache
sizing controller 134 of VCA 132. Working set refers to a set
of'data being cached due to an application accessing the data.
Working set size is the amount of unique data (e.g., unique
block addresses) accessed by a client (pr upstream caching
tier) in a defined period of time. The time is measured either
as wall clock time (e.g., a number of seconds or minutes), or
as an amount of total (unique and repeat) data access. Con-
trollers 114 and 134 can determine how to adjust cache size
based on indications from the other controller. Controller 114
can be implemented as part of other control logic of the
storage server, or it can be implemented as separate control
logic (whether virtually (e.g., code), or physically (e.g., hard-
ware) separate).

In one embodiment, controller 134 is implemented outside
the virtual machine (VM) that contains VCA 132. For
example, controller 134 could be a separate virtual entity of
hypervisor 130. It will be understood that a virtual machine
refers to a software environment instance (or virtual environ-
ment) that executes on hardware resources shared with other
virtual environments. The allocation of hardware resources to
virtual environments is typically performed by a virtual
machine manager or hypervisor, which maps resource
requests from the virtual environments to physical hardware
resources.

As illustrated, in one embodiment, storage server 110
includes VCA controller 116, compute server 140 includes
VCA controller 142, and compute server 150 includes VCA
controller 152. The various controllers 116, 142, and 152 can
all be different controllers, or simply different components of
the same controller. Typically, system 100 will only have a
single controller, whether implemented at a single location of

US 9,274,838 B2

5

system 100, or whether distributed. Similarly to controllers
114 and 134, controllers 116, 142, and 152 can each be
implemented as part of another controller, or as separate
components. They can also be implemented within a VM that
interfaces to a client, or outside any VM that receives client
requests. In one embodiment, the cache sizing controller and
the VCA controller of a particular compute server are part of
a single controller. For example, cache sizing controller 114
can be part of VCA controller 116. In one embodiment, the
VCA controller is a virtual machine executing on a hypervi-
sor. Thus, for example, VCA controller 142 can be part of
hypervisor 130 or reside on hypervisor 130.

System 100 includes at least one monitoring component or
monitoring infrastructure that collects statistics related to
SLO performance. There can be a single monitor component
to collect statistics for all workloads in system 100. In one
embodiment, each compute server of system 100 collects
statistics for its workloads. In one embodiment, system 100
includes multiple monitoring components, which monitor
multiple workloads, but not necessarily those of a particular
compute server. The monitoring infrastructure can be imple-
mented, for example, as a monitor daemon that collects sta-
tistics related to workload characteristics (e.g., read-write
ratio, random-sequential ratio, /O size, working set size,
heavily accessed block ranges), resource utilization within
the storage server and the VCA (e.g., CPU usage, disk or SSD
traffic, cache hit rate, number of cache pages touched, or other
utilization indicators), or other performance or SLO statistics
(e.g., latency, throughput). Monitoring needs visibility into
1/0s in system 100; thus, there can be an advantage to placing
monitoring functions on storage server 110, which has access
to I/O from all clients. Alternatively, monitoring activity can
be distributed to compute servers that have visibility into I/O
generated by clients located on them. As another alternative,
1/0 information can be sent to a compute server or virtual
machine that is set up to perform monitoring.

System 100 includes at least one analysis component that
determines what actions to take if an SLO violation is
detected. In one embodiment, there is one analysis compo-
nent located on storage server 110. In one embodiment, there
is one analysis component located on one of the compute
servers. In one embodiment, there are multiple analysis com-
ponents distributed throughout system 100. In one embodi-
ment, compute server 150 represents a compute server that is
dedicated only to monitoring or analysis or both (a “storage
management server”).

Thus, as illustrated, VGA controller can refer to any or all
of'the monitoring and/or analysis functions (the control func-
tions) described above. Any server in system 100 can include
some portion of the VCA control functions. One or more of
the servers can be implemented without any portion of the
VCA control functions. In one embodiment, monitoring is
performed at storage server 110, while analysis is performed
at one or more of compute servers 140 or 150.

System 100 also illustrates different ways that storage
server 110 can experience multiple workloads. Workload 122
and workload 124 come to storage server 110 through a
channel other than VCA 132. More particularly, clients 102
and 104 access storage server 110 over a different network
path or via a different host than compute server 140. Clients
102 and 104 can be considered to access storage server 110
directly and not via a VCA, whereas the access of client 108
is through VCA 132. Workload 126 comes to storage server
110 via VCA 132, from client 108.

The workloads are separate or distinct from each other
because the have different sources, or they originate from
different applications or different clients. Thus, each set of

25

40

45

50

6

requests from a different application can be referred to as a
distinct workload. The different workloads 122, 124, and 126
could access either the same or different storage object such
as a volume on the storage server. Depending on whether the
different workloads are accessing the same or different vol-
umes, the storage server experiences a certain resultant work-
load characteristic at its end.

There are many different possible protocols that could be
used by the devices of system 100 to communicate. In one
embodiment, the client can issue packets including file-based
access protocols, such as the Common Internet File System
(CIFS) protocol or Network File System (NFS) protocol, over
the Transmission Control Protocol/Internet Protocol (TCP/
IP) when accessing information in the form of files and direc-
tories. Alternatively, the client can issue packets including
block-based access protocols, such as the Small Computer
Systems Interface (SCSI) protocol encapsulated over TCP
(iSCSI) and SCSI encapsulated over Fibre Channel (FCP),
when accessing information in the form of blocks.

VCA controllers 116, 142, and 152 implemented in accor-
dance with any of the single-device or distributed models
described above (collectively, the VCA controller of system
100), make a determination of whether changing a caching
level at a compute server in system 100 will improve a per-
formance metric associated with a workload’s SLO. For
example, assume the VCA controller of system 100 deter-
mines that the access latency for reads associated with work-
load 126 are below a value indicated in an SLO predefined for
workload 126. In response to such a determination, the VCA
controller of system 100 can determine whether adjusting a
caching level within system 1100 will improve the access
latency for workload 126.

It will be understood that a caching adjustment can directly
or indirectly affect the SLO performance of a workload. For
example, in one embodiment, the VCA controller of system
100 determines that adjusting caching in compute server 140
(through which workload 126 passes) will improve the access
latency of workload 126. Alternatively, in one embodiment,
the VCA controller of system 100 determines that adjusting
caching in compute server 150, such as instantiatinga VCA to
buffer workload 122, will improve the access latency of work-
load 126. there may be reasons, for example, to instantiate a
new VCA in compute server 150 (for example, if workload
122 is also close to the maximum or minimum of an SLO
performance metric), rather than increasing a caching capac-
ity at compute server 140. Alternatively, compute server 140
may not have additional resources to allocate to increase
caching in VCA 132, and thus, adjusting caching at a different
compute server would be the only way to potentially improve
the access performance for workload 126.

FIG. 2 is a block diagram of an embodiment of a virtual
caching adjustment at a compute server to cure a service level
objective violation. System 200 illustrates an example of a
scenario where a VCA is dynamically instantiated to handle
an SLO violation. System 200 can be, for example, an
embodiment of system 100 of FIG. 1. System 200 includes
compute servers 210, of which server 220 and server 230 are
specifically shown. Server 220 includes VM (virtual
machine) 222, and server 230 includes VM 232 and VM 234.
System 200 includes storage server 240, which is network-
attached to server 220 and server 230. System 200 also
includes VCA controller 260, which can be implemented by
a compute server 210, by storage server 240, or in a distrib-
uted manner as described above.

VM 222 and VM 232 share disks 242, while VM 234
accesses a different set of disks 244. Thus, workload 252 and
workload 254 access overlapping storage space, while work-

US 9,274,838 B2

7

load 256 does not. It will be understood that an SLO can be
associated with a specific workload, and/or can be associated
with a VM. For purposes of system 200, assume each VM
222,232, and 234 have an associated SLO for their respective
workloads 252, 254, and 256. Assume that due to a change in
workload 254, system 200 is not meeting the SLO for VM
232. System 200 performs an analysis (e.g., via a VCA con-
troller 260) to determine what can be done about the detected
SLO violation for VM 232.

In system 200, VM 222, VM 232, and VM 234 could all
interfere with each other. For example, all of the VMs could
interfere if there is a memory bottleneck on storage server
240; while VM 222 and VM 232 could interfere due to a disk
bottleneck, given that they share the same underlying disks.
In one embodiment, VCA controller 260 determines co-loca-
tion by using a set of experimental performance samples and
applying a statistical approach to determine the correlation
between the metrics of different workloads. Assume for the
example here that VCA controller 260 identifies VM 222 and
VM 232 as interfering workloads. In one embodiment, VCA
controller 260 then identifies the subset of cacheable work-
loads, which are workloads that can be offloaded using a
cache. For example, VCA controller 260 can be programmed
with a set of rules to filter workloads based on best-practices
(e.g., for a write-through cache, workloads with a high frac-
tion (>20%) of write 1/Os will not benefit from caching).

Assume that VCA controller 260 determines workload 252
is cacheable, but workload 254 is an uncacheable workload.
Thus, VCA controller 260 identifies workload 252 as a can-
didate for caching, but removes workload 254 from consid-
eration for a caching adjustment. After filtering for cacheable
workloads, VCA controller determines an appropriate size
for a VCA to offload a sufficient amount of I/Os to correct the
SLO violation. In one embodiment, VCA controller 260 uses
a cache sizing tool that uses historical working set size esti-
mates gathered by storage system 240 to build a cache miss-
ratio curve. The miss-ratio curve indicates the fraction of I/Os
sent to underlying storage system 240, i.e., cache misses, for
various cache sizes. Using the miss-ratio curve, VCA control-
ler 260 can estimate the performance impact on the SL.Os of
each workload of system 200. More particularly, VCA con-
troller 260 can utilize an SL.O impact analyzer to determine
the impact of the residual workload, or the workload after
instantiation of VCA for the primary workload (252) as well
as the co-located workloads in the underlying storage system.
VCA controller 260 can also estimate the performance
expected to be provided by the VCA.

In one embodiment, based on criteria described above, or
through other calculations, VCA controller 260 generates a
list of potential caching solutions. In one embodiment, VCA
controller 260 includes a policy or rules related to use of
resources, cost constraints, and/or other criteria, to rank
potential caching solutions. VCA controller 260 can select a
highest-ranked potential solution as the solution to execute to
cure the SLO violation.

Assume, for example, that VCA controller 260 determines
that VM 222 obtains a miss-ratio of 50% for a 4 GB cache,
25% for an 8 GB cache, and 20% for a 16 GB cache. If
however, VCA controller 260 determines that sending 50% of
traffic from VM 222 to storage server 240 will not solve the
SLO violation, VCA controller 260 may discard an option of
creating a 4 GB cache. Similarly, if an administrative policy
of VCA controller 260 indicates a preference to reduce
resource cost, an option to create an 8 GB cache would be
ranked higher than an option to create a 16 GB cache. Thus, in
accordance with these examples, VCA controller 260 deter-

10

15

20

25

30

35

40

45

50

55

60

65

8

mines to create an 8 GB cache, and determines that it should
be instantiated on the same compute server as VM 222 (com-
pute server 220).

Thus, VCA controller 260 can dynamically create VCA
224 on compute server 220, such as with the memory on the
compute server and/or with SSD 226. VCA 224 is an 8 GB
cache to reduce the load on storage server 240 in accordance
with the example. Workload 252 is re-routed through VCA
224. Workload 252 is removed, and workload 258 represents
workload 252 as routed through VCA 224, and will be of a
reduced load on storage server 240 as compared to workload
252. Reducing the load on storage server 240 enables system
200 to meet the SLO requirements for 232.

The scenario described above could illustrate a reactive
caching adjustment. In one embodiment, detecting an SLO
violation refers to proactively determining that based on his-
torical performance, an SLO violation is imminent. For
example, historical data may indicate that a particular work-
load changes dramatically due to a change to known peak
hours. Thus, as described herein, caching adjustment can be
performed reactively to actual detected violations, as well as
proactively to expected violations.

FIG. 3 is a block diagram of an embodiment of a virtual
cache appliance controller. As described above with respect
to FIGS. 1 and 2, a VCA controller can be implemented on a
single device, or it can be distributed. In one embodiment,
VCA controller 300 includes SL.O monitor component 310,
analyzer component 320, and solution execution component
330. Any element in any drawing herein labeled “VCA con-
troller” includes at least one of the components (310, 320,
330) of VCA controller 300. Thus, the VCA controllers illus-
trated herein can refer to any part of VCA controller 300, or all
parts illustrated VCA controller 300.

In one embodiment, SLO monitor 310 includes service
levels 312. Service levels 312 indicate levels predetermined
for a workload, client, or VM associated with a workload.
Service levels 312 are typically represented as values that
represent a minimum, maximum, average, or other statistical
metric for a particular characteristic of performance for the
workload such as latency of data access or throughput for
accesses. Statistics 314 represent runtime monitoring of the
characteristics of performance, additional workload charac-
teristics related to performance, and resource utilization sta-
tistics, Statistics are generated or gathered by SLO monitor
310 as a workload generates 1/O. Workload characteristics
that can be the subject of an SLO and tracked can include
read-write ratio, random-sequential ratio, /O size, IOPS (I/O
per second), working set size, heavily accessed block ranges,
latency, throughput, or other characteristics related to data
access. Resource utilization statistics can include metrics
such as CPU utilization, disk or SDD traffic and utilization,
cache hit rate, number of unique cache pages accessed, or
other utilization statistics related to identifying how useful the
current allocation of resources is. SLO monitor 310 can
directly monitor the I/O of individual workloads, or receive
the runtime statistics as monitored by another monitoring
service.

In one embodiment, analyzer 320 includes violation detec-
tion 322, solution creation 324, and solution selection 326.
Violation detection 322 enables analyzer 320 to compare
service levels 312 with statistics 314 to determine whether an
SLO violation occurs. Violation detection 322 can be a simple
detection, comparing a predetermined value to a monitored
value, with a violation detected if the monitored value is
outside a range of the predetermined value. In one embodi-
ment, violation detection 322 further includes historical data
and timing detection. With historical data and timing detec-

US 9,274,838 B2

9

tion, violation detection 322 can preemptively determine that
a violation will occur, rather than just reactively detecting a
violation. Preemptive determination works better with accu-
rate trend data indicating specific patterns of workload
changes.

Solution creation 324 enables analyzer 320 to generate
multiple potential solution scenarios, similar to what is set
forth above in the description of FIG. 2. Namely, analyzer 320
can first determine all possible choices of action within the
storage system, and then filter down to a “best” choice based
on policies and rules predefined by an administrator. Analyzer
320 generates a list or set of all possible choices based on
system capabilities, such as available resources and allowable
operations. Analyzer 320 filters the list down based on rules or
policy indicating utility of a solution (e.g., whether or not the
solution will have an effect, or enough of an effect) or pref-
erence of a solution (e.g., based on cost, resource utilization,
or other administrative factors). Analyzer ranks the possible
choices against each other to determine what action to take in
response to the SLO violation detection.

Solution selection 326 enables analyzer 320 to make cal-
culations or computations related to comparing the possible
solutions and filtering them. In one embodiment, the filtering
process can be considered the selection process. The solution
decided upon by solution selection 326 can be different for
different systems, even if the service levels and monitored
performance statistics were exactly the same. The selection of
asolution is thus controllable by the rules and preferences that
can be edited or otherwise programmed into VCA controller
300 for a system implementation.

Solution execution 330 enables VCA controller 300 to
implement a solution selected by analyzer 320. Solution
execution 330 includes caching change 332, which represents
all features and functions associated with instantiating a VCA
or changing a level of caching at a VCA. In one embodiment,
changing a level of caching can be performed by instantiating
acache of a different size than one currently available, rerout-
ing all workload traffic through the new cache, and closing the
original cache. Caching change 332 includes accessing a
hypervisor that hosts a VM in which the VCA is or will be
implemented.

Application rerouting 334 enables solution execution 330
to redirect traffic for a particular workload through the VCA
as an access channel. Cache warm-up 336 enables solution
execution 330 to load “hot” blocks into a newly-created VCA
to reduce the time for rerouting. For example, assuming that
a VCA is created to reduce an SLO violation related to access
latency, it does not make much sense to reroute traffic through
a cache that will then cause further access latency by a series
of cache misses to load the requested blocks into the cache.
Instead, the VCA can be warmed up by monitoring what
blocks are frequently used by the workload, and then preemp-
tively loading those into the cache as soon as it is instantiated.
Then many of the initial access requests will be cache hits
rather than cache misses.

VCA controller 300 is implemented on hardware resources
of'one or more of the servers in the networked storage system.
Those hardware resources include at least processing com-
ponents or processing resources and memory or storage
resources. Additionally, VCA controller 300 can utilize net-
work hardware resources to communicate with a compute
server in which a VCA be created or changed.

FIG. 4 is a block diagram of an embodiment of virtual
cache appliance management by separate phases including
monitoring 402, analysis and planning 404, and execution
406. Monitoring 402 represents a phase where the VCA con-
troller (e.g., VCA controller 300) monitors workloads to

10

15

20

25

30

35

40

45

50

55

60

65

10

gauge performance and to obtain workload characteristics.
Analysis and planning 406 represents a phase where the VCA
controller identifies interfering workloads and determines
appropriate cache sizes. Execution 406 represents a phase
where the VCA controller dynamically instantiates or
changes a level of caching of a VGA, and reroutes traffic away
from the overloaded storage system.

Monitoring 402 can include mechanisms for monitoring
either SLO violation, or underutilization of allocated caching
resources, or both. The performance monitor is to detect
utilization of memory resources outside ofa target utilization.
For an SLO violation, the target utilization is that the SLO be
satisfied. For underutilization, the target utilization is that
system resource utilization not fall below a threshold. Thus,
in one embodiment, monitoring 402 includes a performance
monitor that is an SLO monitor to detect SLO violations. In
one embodiment, monitoring 402 includes a performance
monitor to detect underutilization memory resources in the
storage system.

In either case, the performance monitor can monitor one or
more performance metrics to determine whether utilization is
within the target. For underutilization, performance metrics
can be monitored for an entire VCA instance, or for multiple
instances, and thus across multiple workloads. For SLO vio-
lations, the performance metrics are monitored specifically
with respect to a particular workload.

Similarly to monitoring 402, analysis and planning 404 can
include mechanisms for modifying a level of caching to
dynamically adjust resource allocation to either cure an SLO
violation, or cure underutilization, or both. For SLO viola-
tions, the modification is targeted to adjusting performance
with respect to a specific workload. For underutilization, the
modification is targeted to adjust performance across one or
more caching devices (VCAs).

In monitoring 402, the VCA controller compares perfor-
mance 414 against SLOs 412 for each monitored workload.
SLO violation detection 410 is illustrated as being within
monitoring 402, but could also be placed in analysis and
planning 404. For example, consider the alternative example
of FIG. 3 where violation detection 322 is within analyzer
320. The VCA controller can utilize both performance met-
rics and traffic metrics of each workload running on the stor-
age system. In one embodiment, the VCA controller tracks
performance numbers such as IOPS, average latency, and I/O
request sizes. In one embodiment, the VCA controller can
track additional workload characteristics 430 such as the
read/write count 432 (the I/O request mix), working set size
(WSS) 434 over different periods of time, and frequently
accessed blocks 436.

In one embodiment, the VCA controller can track resource
utilization 418, which includes characteristics relevant to per-
formance. Such characteristics can include CPU utilization,
disk or SSD traffic, cache hit rate, and the number of cache or
memory pages touched (accessed). Tracking of resource uti-
lization 418 enables the VCA controller to selectively remove
VCAs from the system when resource utilization can be
improved by eliminating them.

Whether SLO violation detection 410 is considered to be
part of monitoring 402 or analysis and planning 404, detec-
tion of a violation triggers the VCA controller to perform an
analysis. In one embodiment, the specifically affected work-
load 416 for which the VCA controller detected a violation is
used to determine what interfering workloads exist in the
storage system. Workload interference detection 420 enables
the VCA controller to identify workloads that compete for the
same resources on the underlying storage system as affected
workload 416.

US 9,274,838 B2

11

The VCA controller identifies candidate workloads 422
from interference detection 420. The candidate workloads are
workloads that might be offloaded to affect the detected SLO
violation. The VCA controller will attempt to offload either
affected workload 416 or a co-located or interfering workload
to free up resource utilization in the storage system and cor-
rect the SLO violation. In one embodiment, the VCA control-
ler performs a cacheability check to determine if any of the
candidate workloads are not good candidates for cache oft-
loading. The VCA controller can use read/write count 432 to
determine if a ratio of writes is too high for caching to be
effective.

The VCA controller ends up with cacheable candidate
workloads 442, which can then be further analyzed to gener-
ate possible solutions. In one embodiment, the VCA control-
ler determines what size of cache would be needed with cache
sizing 450. The cache sizing is directly influenced by the
working set size, seeing that the cache size should typically be
a predefined ratio of the overall working set size to be effec-
tive. In one embodiment, impact analyzer 452 determines
from system configuration 454 (configuration of the storage
server) what is the expected effect of different cache size
changes.

The potential cache sizes 456 represent the possible solu-
tions generated by the VCA controller. The VCA controller
performs solution selection 460 to determine what cache size
at what compute server will have the desired performance
effect. In one embodiment, after determination, the VCA
controller selects a workload and cache size 462 for cache
offload. Host selection 470 represents the VCA controller
identifying the host information of the selected workload to
offload. In one embodiment, the VCA controller then imple-
ments cache instantiation 480 for the workload and host infor-
mation identified 472. Alternatively, the VCA controller can
resize a VCA.

In one embodiment, the VCA controller instantiates a
cache 480 by obtaining a virtual machine image, configuring
the memory and network settings, applying the appropriate
licenses, and issuing a command to the hypervisor of the
selected host to start the VCA. In one embodiment, once the
VCA has started, the VCA controller reroutes (application
rerouting 482) the network connections between the work-
load and the underlying storage system through the VCA. In
one embodiment, in parallel to cache instantiation 480 and
application rerouting 482, the VCA controller executes cache
warm-up procedure 484 to fetch the most-frequently-used
data into the cache from frequently accessed blocks 436.

The VCA controller can repeat the monitoring, analysis
and planning, and execution for the same workload, and/or
for other workloads as often as it detects SLO violations.
Thus, the monitoring process continues for all workloads. If
the cache usage behavior changes for a workload so that hit
rates or other performance metrics are not met, the VCA
controller can repeat the entire process for the current work-
load to either expand the memory used by the existing VCA or
create anew VCA and reroute the application to use the new
VCA.

In one embodiment, the VCA controller can remove a
VCA, as mentioned above. In response to determining that
resource utilization is tower than a predetermined threshold,
the VCA controller can trigger underutilization detection
424. The predetermined threshold can be a percentage of
resource utilization per time period, either on average or
based on peaks, or could be a predefined number of cache
accesses. The VCA controller can determine the number of
cache accesses either on a cache-by-cache basis, or for a
group of caches.

10

15

20

25

30

35

40

45

50

55

60

12

The VCA controller identifies a group of candidate caches
426 that may be underutilized, or that can be closed in
response to detecting underutilization (if the controller deter-
mines underutilization by a mechanism that is not directly
associated with a specific cache). In one embodiment, impact
analyzer 452 determines from system configuration 454 (con-
figuration of the storage server) what is the expected effect of
removing different caches from the system.

The VCA controller performs cache selection 464 to deter-
mine what cache (VCA) removal at what compute server will
have the desired performance effect. It will be understood that
reference to removing a cache is specific to de-allocating a
VCA. In one embodiment, the VCA controller removes a
cache 490 by obtaining a virtual machine image, configuring
the memory and network settings, applying the appropriate
licenses, and issuing a command to the hypervisor of the
selected host to terminate the VCA. In one embodiment,
termination of the VCA may cause the VCA controller to need
to reroute workloads, similar to what is described above for
cache instantiation.

FIG. 5 is a flow diagram of an embodiment of a process 500
for reducing service level objective violations. In one
embodiment, an administrator for a system (e.g., system 100)
defines SLO for workloads, process block 502. The defined
SLO becomes part of the system data that will be used by a
VCA controller (e.g., 300) to monitor workload performance
by monitoring performance metrics related to the predefined
SLOs for system workloads, process block 504. The VGA
controller obtains workload characteristics by either directly
monitoring such characteristics, or receiving them from a
monitoring component, process block 506.

The VCA controller determines if an SLO violation occurs,
process block 508, by comparing the expectations of the
predefined SLO with the monitored performance. If there is
no SLO violation, process block 508, the VCA controller
continues monitoring at process block 504. If the VCA con-
troller detects an SLO violation, process block 508, in one
embodiment the VCA controller determines if workload
interference exists that could affect workload performance,
process block 510.

Ifthere is no workload interference, process block 512, the
VCA controller can determine an SLO violation solution,
process block 514. Such a solution would involve either a
caching change for the specific workload, or a change or
solution that is outside the scope of what is discussed herein.
If the VCA controller detects interfering workloads, process
block 512, in one embodiment the VCA controller identifies
cacheable workloads, process block 516. Cacheable work-
loads are workloads for which data access performance is
expected to increase in response to caching some or part of the
workload data.

In one embodiment, the VCA controller calculates an
expected effect of a cache size change, process block 518. If
cacheability is first checked, the VCA controller can calculate
for the workloads determined to be cacheable. The VCA
controller determines an SLO violation solution based on the
calculated expected effects and/or other factors, process
block 520. In one embodiment, the VCA controller checks all
determined solutions for viability, process block 522. For
example, a solution may not be viable if it requires resources
that are not available in the system.

If the VCA controller does not find a viable solution, pro-
cess block 522, the VCA controller can determine an SLO
violation solution that does not include changing caching,
process block 514. For a viable solution, process block 522,
the VCA controller identifies a specific caching change,

US 9,274,838 B2

13

including a host on which the caching change wilt be imple-
mented. The VCA controller implements the selected caching
change, process block 524.

FIG. 6 is a flow diagram of an embodiment of a process for
removing cache resources when resource utilization is low. In
one embodiment, an administrator for a system (e.g., system
100) defines SLO for workloads, process block 602. The
defined SLO becomes part of the system data that will be used
by a VCA controller (e.g., 300) to monitor workload perfor-
mance by monitoring performance metrics related to the pre-
defined SL.Os for system workloads, process block 604, The
VCA controller obtains workload characteristics by either
directly monitoring such characteristics, or receiving them
from a monitoring component, process block 606.

The VCA controller determines if allocated resources are
underutilized, process block 608, by comparing the expecta-
tions of the predefined resource allocations with monitored
performance. If there is no underutilization, meaning the
allocation of resources is proper, process block 610, the VCA
controller continues monitoring at process block 604. If the
VCA controller detects underutilization, process block 610,
in one embodiment the VCA controller identifies candidate
VCAs for reduction or removal, process block 612. In one
embodiment, any VCA in the system can be a candidate for
removal. In one embodiment, the VCA controller determines
underutilization with respect to a specific VCA, or group of
VCAs, which would then be the candidates. In one embodi-
ment, only VCAs below a percentage of utilization are can-
didates.

If'there is not at least one candidate, process block 614, the
VCA controller continues to monitor performance metrics,
process block 604. If there is at least one candidate VCA for
reduction or removal, process block 614, the VCA controller
calculates an expected effect of the reduction or removal of a
cache, process block 616. The VCA controller determines a
solution based on the calculated expected effects, process
block 618. A solution includes specifically identifyinga VCA
to remove. Alternatively a solution includes specifically iden-
tifying a VCA to reduce, and an amount by which to reduce it.
The VCA controller implements a change by removing a
VCA calculated to be removable from the system, or reducing
an amount of caching resources allocated to a VCA, process
block 620. In one embodiment, when the VCA controller
removes a VCA from the system, it also redirects one or more
workflows from the VCA to be removed to another VCA or
other caching mechanism.

In general, SL.O-based VCA management as described
herein provides a tow-latency, high-impact mechanism to
dynamic changes in a system. Data access in a data center is
often highly dynamic. As described above, a storage system
with a VCA controller that monitors SLO performance can
respond quickly to changes in a highly dynamic environment
by changing behavior of the caching. Thus, better resource
utilization is accomplished. VC As can be dynamically instan-
tiated, modified, and de-allocated by the VCA controller,
which makes better use of hardware resources than having a
dedicated hardware resource to perform the caching.

Dynamism in a data center can be the result of either or
both of changes in workload needs over time, or changes in
number of workloads over time. Changes in workload needs
over time can manifest as peak requirements that are signifi-
cantly different than normal or baseline or average require-
ments. It is not uncommon for peak requirements to be at least
10 times the normal requirements. Frequently the peaks in
requirements occur in a periodic manner. Additionally, indi-
vidual workloads can be created and removed over time,

10

15

20

25

30

35

40

45

50

55

60

65

14

which is very common in cloud service environments where
many virtual machines are created and/or destroyed every
hour.

While it may be possible for smaller network environments
to be monitored by human intervention to adjust for SLO
violations, as network sizes scale upward, managing work-
loads via human intervention to handle every SLO violation
or resource crunch is prohibitively expensive if not impos-
sible. As alternatives, traditional management approaches
typically include low-latency, low-impact techniques such as
throttling, or high-latency, high-impact techniques such as
data migration. As described herein, management by the
VCA controller provides a low-latency, high-impact tech-
nique to handle changes in workload requirements, even in
large network environments.

Thus, the monitoring and analysis architecture provided by
the VCA controller provides a mechanism for meeting ser-
vice-level objectives of workloads (or their associated appli-
cations) while utilizing only the resources needed. The
improved resource utilization towers hardware, power, and
management costs for customers.

The VCA controller leverages the availability of virtual-
ized, elastic compute resources that can be allocated or dis-
carded based on demand. The instantiation of virtual compute
resources on demand shifts the resource requirements from
storage server devices to compute nodes coupled to the stor-
age server. Resources on compute servers are typically
cheaper than those on storage servers. Further, resources on
compute servers can be used more flexibly. For example,
DRAM (dynamic random access memory) on compute serv-
ers can be used for the compute needs of applications as well
as for the caching needs of a storage stack to create a VCA for
a workload of an application.

In one embodiment, the VCA uses both memory and disk
(or SSDs) to perform caching. In one embodiment, the data in
volatile memory is a subset of the data on disk. In one embodi-
ment, the VCA contemplated herein forwards writes to the
storage server and locally invalidates the data blocks that are
written to. In one embodiment, the VCA supports a read
command that causes no data transfer to the client, but causes
the data to be read internally. Such a command can be used by
the VCA controller to warm up a newly instantiated VCA.

FIG. 7 is a block diagram of an embodiment of a storage
server coupled to a virtual cache appliance instance. System
700 includes dynamic cache origin 710, which represents an
enclosure or backend system for which the VCAs act as
caches. Generating the VCAs can be considered to “offload
the origin” in that the VCA capabilities of the cache instance
on other hardware can reduce the burden on the backend
storage server.

Origin 710 includes storage hardware, including storage
volume 716, which can be one or more logical grouping of
data storage resources. In one embodiment, origin 710 is a
blade enclosure with storage resources as well as storage
server (controller) resources. Storage server 712 manages the
storage resources of origin 710. Requests related to data
stored at origin 710 are processed through storage server 712.

Switch 720 represents one or more network resources to
allow remote access to storage server 712. As illustrated,
switch 720 connects to virtual environments 730, 750, and
760, which are virtualized environments executing on hard-
ware 722. Hardware 722 can represent a single instance of
hardware resources on which the virtual environments
execute, or there could be separate hardware systems for each
virtual environment.

Virtual environment 730 includes VCA 734 executing on
hypervisor 732, which acts as a cache tier for storage server

US 9,274,838 B2

15

712. Hypervisor 732, as well as hypervisors 752 and 762 of
virtual environments 750 and 760, respectively, includes a
virtual switch (Vswitch) and a virtual environment filesystem
(VES). Other virtual and/or real environments could also be
executed on hardware 722. The virtual switches provide
access via the hypervisor to hardware switching resources
used to connect to the physical resources of origin 710, and
the other virtual environments connected to VCA 734. In one
embodiment, hypervisor 732, 752, and 762 are all the same
hypervisor, with VCA 734 and virtual environments 750 and
760 being different VMs executing on it. Each OS and App
combination shown can be considered a separate VM these
VMs can also be executed on the same hypervisor in an
embodiment where hypervisors 732, 752, and 762 are all the
same hypervisor. As is understood by those skilled in the art,
the applications and operating systems of each virtual envi-
ronment access the virtual switch of the respective virtual
environment as though the switch were actual hardware. The
virtualization controller (hypervisor) manages the mapping
of virtual resources to hardware resources, for the virtual
switches as well as other virtualized physical resources.

In one embodiment, virtual environment 730 hosts VCA
734, and virtual environments 750 and 760 host access to
clients. As illustrated, environments 750 and 760 are config-
ured identically, with multiple operating system (OS)
instances and application instances connecting to the corre-
sponding hypervisor (752 and 762). The configurations do
not necessarily have to be identical. In one embodiment, each
operating system of virtual environments 750 and 760 repre-
sents a separate virtual machine (VM), and there can be one or
more applications executing on each operating system. The
applications could each represent one or more clients. The
virtual switch of each virtual environment 750 and 760 pre-
sents an instance representation (754 and 764, respectively)
of storage volumes 714 of origin 710.

In one embodiment, the applications are multiple indi-
vidual threads. In one embodiment, each thread is considered
a workload, or one thread is considered an application. The
applications are dynamic, and can be opened and closed
dynamically, as well as dynamically changing what data and
how much data they access.

In one embodiment, VCA 734 is implemented as an
instance of an operating system the same or similar to the one
executed on storage server 712. Thus, storage server 712
executes a storage server OS natively, while the storage server
OS executes virtually on hypervisor 732, hosted remotely
from origin 710. Storage server 712 is local to storage vol-
umes 716, while VCA accesses storage volumes 716
remotely via switch 720. Storage resources 740 represent the
physical storage resources for virtual environments 730, 750,
and 760. In one embodiment, storage resources 740 could be
considered part of hardware 721.

VCA 734 includes protocols and associated drivers and
network stacks to communicate over the virtual switch of
hypervisor 732. In one embodiment, VCA 734 includes at
least NRV and NFS as supported protocols. In one embodi-
ment, origin 710 can be a Fabric Attached Storage (FAS), and
export storage volumes to VCA 734 over the NRV protocol.
VCA 734 can then serve the cached volumes to clients of
virtual environments 750 and 760 over the NFS protocol.

VCA 734 also includes a filesystem as well as drivers and
management resources for storage 740. A combination of
storage 740 and RAM 770 of the hypervisor/host (part of
hardware 722) act as the caching device for VCA 734.
Because the VCA cachetier is dynamic, space from both DAS
740 and RAM 770 of the hypervisor can be carved out to
implement the VCA tier as a dynamic resource. In one

10

15

20

25

30

35

40

45

50

55

60

65

16

embodiment, VCA 734 controls all storage access forall VMs
of virtual environments 750 and 760. Data accessed from
storage volumes 716 is cached in storage resources 740, and
presented as instances 754 and 764 to virtual environments
750 and 760, respectively, by the virtual switches of the
respective environments. Each VM can store local data in
addition to the data of storage volumes 716.

As mentioned above, VCA 734 can respond to dynamic
behavior of different workloads, which are represented either
directly or indirectly by the applications of the VMs of virtual
environments 750 and 760. The dynamic behavior of the
VCA is controlled in one embodiment by a VCA controller
(e.g.,714,736,756,766). The various elements labeled VCA
controller could be portions of a single distributed VCA con-
troller, or VCA controller could be implemented at any one of
the locations illustrated. As discussed above, VCA controller
monitors workload performance in system 700, and makes
determinations about dynamically changing caching within
system 700. VCA 734 or another VCA could be instantiated
or changed in size. In response to a reduction in workload
requirements, a VCA could also be resized smaller or entirely
de-allocated.

FIG. 8 is a block diagram of an embodiment of a virtual
storage server. System 800 is a representation of a virtual
environment (e.g., environments 730, 750, 760 of FIG. 7).
Physical layer 850 includes the hardware resources that
execute virtual machine 810, via hypervisor 840. Hypervisor
840 can be implemented as any virtualization engine, and
includes virtual switch 842 and virtual filesystem 844. Virtual
switch 842 maps network and communication resources from
virtual device layer 830 to hardware resources of physical
layer 850. Similarly, virtual filesystem 850 represents one or
more filesystem resources that map networked (shared) stor-
age resources and local (non-shared) storage resources of
physical layer 850.

Physical layer 850 is depicted with various components
that can be present in whole or in part, and additional com-
ponents or subcomponents can also be present. Physical layer
850 includes one or more processors or processing resources
872, which execute instructions and can perform various
operations as described herein. Processor 872 can include any
type of microprocessor, central processing unit (CPU), pro-
cessing core (including multi-core devices), or other process-
ing devices.

Memory 874 represents the main memory for system 800,
and provides temporary storage for code (e.g., software rou-
tines or series of instructions, commands, operations, pro-
grams, data) to be executed by processor 872. Memory 874
can include read-only memory (ROM), flash memory, one or
more varieties of random access memory (RAM), or the like,
or a combination of such devices.

The various components of physical layer 850 can be
coupled by one or more buses 876. Bus 876 is an abstraction
that represents any one or more separate physical buses, com-
munication lines, and/or point-to-point connections, con-
nected by appropriate bridges, adapters, and/or controllers.
Therefore, bus 876 can include, for example, one or more of
a system bus, a Peripheral Component Interconnect (PCI)
bus, a HyperTransport or industry standard architecture (ISA)
bus, a small computer system interface (SCSI) bus, a univer-
sal serial bus (USB), or an Institute of Electrical and Elec-
tronics Engineers (IEEE) standard 1394 bus (commonly
referred to as “Firewire”).

Physical layer 850 includes one or more network interfaces
(NIC) 852, which represent hardware and software (e.g.,
drivers) that enable physical layer 850 to connect and com-
municate with remote devices over one or more networks. In

US 9,274,838 B2

17

one embodiment, physical layer 850 includes storage
resources separated as local to a particular virtual environ-
ment, and other shared data (e.g., shared or cached data for a
VCA). For example, storage resources 860 represent the
cached data shared among multiple virtual environments,
while storage 856 represents local storage.

Storage 856 includes resources for implementing a write
cache 854, which is mapped by virtual filesystem 844 to
virtual machine 810 to store the data written for various
clients. Storage 856 can be separated into multiple virtual
disks (VD) 856-1 through 856-M. The virtualization of disks
is merely for purposes of storage management and organiza-
tion, and can be performed in any way known in the art.

Storage 860 includes storage resources for implementing a
virtual cache layer, with resources separated as virtual disks
860-1 through 860-N. Typically N will be an integer much
larger than M. Controller 862 provides physical-tier manage-
ment of the storage. The options for control or management of
storage 860 vary widely, depending on the desired implemen-
tation. For example, controller 862 can be implemented as a
JBOD (Justa Bunch Of Disks controller, a RAID (Redundant
Array of Independent/Inexpensive Disks/Drives controller,
or other controller.

Thus, it will be understood that storage 860, in addition to
being a virtual resource, can be managed with abstraction
layers to allow a logical disk organization. In one embodi-
ment, the abstraction convention implemented in system 800
is the same as the abstraction used by abackend storage server
atthe data origin (e.g., storage server 712 of origin 710 in FIG.
7), However, the abstraction convention at system 800 could
be different from a backend storage server that is the source of
the cached data.

Virtual device layer 830 represents the virtual device as
mapped by hypervisor 840. In one embodiment, virtual
device 830 includes network interface 831, CPU 832, RAM
833, BIOS (Basic Input/Output System) 834, UART (Univer-
sal Asynchronous Receiver-Transmitter) 835, network stor-
age 836, and local storage 837. Network interface 831 enables
virtual device 810 to access other devices across networks via
network interface(s) 852. CPU 832 represents the processing
resources available to virtual machine 810, which consists of
dedicated and/or shared processing resources 877.

RAM 833 represents memory resources allocated to virtual
machine 810, and includes shared and/or dedicated resources
of memory 874. BIOS 834 provides resources to initialize the
software and virtual systems on the allocated hardware
resources. UART 835 represents direct-connection resources,
rather than point-to-point or network connection resources.
Network storage 836 enables virtual machine 810 to access
storage 860 via virtual filesystem 844 and controller 862.
Local storage 837 can provide, for example, persistent write
cache 854 for storing data at system 800.

Each of the components described at virtual device layer
830 has a physical complement at physical hardware layer
850. Hypervisor 840 maps the resources of virtual device
layer 830 to its complement in physical hardware layer 850.
Virtual device layer 830 is illustrated as included in virtual
machine 810, but it will be understood that the resources are
included virtually. Virtual machine 810 includes virtual cach-
ing appliance (VCA) 820 (which could also be referred to as
avirtual storage adapter), which has access to the resources of
virtual device layer 830 as the available computing resources.

VCA 820 includes software and drivers that manage and
control the virtual resources. VCA 820 presents the virtual
resources to the applications or workloads that execute on
virtual machine 810. In one embodiment, VCA 820 includes
driver 821, network stack 822, protocol(s) 823, OS 824,

10

15

20

25

30

35

40

45

50

55

60

65

18
RAID 825, storage controller 826, network storage driver
827, and virtual nonvolatile RAM (V-NVRAM) 828.

Driver 821 provides driver resources to drive communica-
tion via the network interfaces. Network stack 822 imple-
ments one or more communication stacks for protocol(s) 823.
Protocol(s) 823 include the one or more protocols used by
virtual machine 810 to communicate with networked devices.
Operating system 824 controls the flow of operation virtual
machine 810. RAID 825 represents any type of storage
abstraction used for managing storage, with one of the vari-
ous versions of RAID being common types. Many abstraction
types are possible. Storage controller 826 can include, for
example, a storage stack and storage drivers used to access
storage resources. Network storage driver 827 provides one
type of driver for access to storage area networks (SANs),
network area storage (NAS), or other networked storage.
Virtual nonvolatile RAM 828 represents drivers for local
storage of virtual machine 810.

FIG. 9A illustrates a network storage system in which
virtual cache appliance management can be implemented.
Storage servers 910 (storage servers 910A, 910B) each man-
age multiple storage units 950 (storage 950A, 950B) that
include mass storage devices. These storage servers provide
data storage services to one or more clients 902 through a
network 930. Network 930 can be, for example, a local area
network (LAN), wide area network (WAN), metropolitan
area network (MAN), global area network such as the Inter-
net, a Fibre Channel fabric, or any combination of such inter-
connects. Each of clients 902 can be, for example, a conven-
tional personal computer (PC), server-class computer,
workstation, handheld computing or communication device,
or other special or general purpose computer.

Storage of data in storage units 950 is managed by storage
servers 910 which receive and respond to various read and
write requests from clients 902, directed to data stored in or to
be stored in storage units 950. Storage units 950 constitute
mass storage devices which can include, for example, flash
memory, magnetic or optical disks, or tape drives, illustrated
as disks 952 (852A, 952B). Storage devices 952 can further
be organized into arrays (not illustrated) implementing a
Redundant Array of Inexpensive Disks/Devices (RAID)
scheme, whereby storage servers 910 access storage units 950
using one or more RAID protocols known in the art.

Storage servers 910 can provide file-level service such as
used in a network-attached storage (NAS) environment,
block-level service such as used in a storage area network
(SAN) environment, a service which is capable of providing
both file-level and block-level service, or any other service
capable of providing other data access services. Although
storage servers 910 are each illustrated as single units in FIG.
9A, a storage server can, in other embodiments, constitute a
separate network element or module (an “N-module”) and
disk element or module (a “D-module”). In one embodiment,
the D-module includes storage access components for servic-
ing client requests. In contrast, the N-module includes func-
tionality that enables client access to storage access compo-
nents (e.g., the D-module), and the N-module can include
protocol components, such as Common Internet File System
(CIFS), Network File System (NFS), or an Internet Protocol
(IP) module, for facilitating such connectivity. Details of a
distributed architecture environment involving D-modules
and N-modules are described further below with respect to
FIG. 9B and embodiments of a D-module and an N-module
are described further below with respect to FIG. 10.

In one embodiment, storage servers 910 are referred to as
network storage subsystems. A network storage subsystem
provides networked storage services for a specific application

US 9,274,838 B2

19

or purpose, and can be implemented with a collection of
networked resources provided across multiple storage servers
and/or storage units.

In the embodiment of FIG. 9A, one of the storage servers
(e.g., storage server 910A) functions as a primary provider of
data storage services to client 902. Data storage requests from
client 902 are serviced using disks 952A organized as one or
more storage objects. A secondary storage server (e.g., stor-
age server 910B) takes a standby role in a mirror relationship
with the primary storage server, replicating storage objects
from the primary storage server to storage Objects organized
on disks of the secondary storage server (e.g., disks 950B). In
operation, the secondary storage server does not service
requests from client 902 until data in the primary storage
object becomes inaccessible such as in a disaster with the
primary storage server, such event considered a failure at the
primary storage server. Upon a failure at the primary storage
server, requests from client 902 intended for the primary
storage object are serviced using replicated data (i.e. the
secondary storage object) at the secondary storage server.

It will be appreciated that in other embodiments, network
storage system 900 can include more than two storage serv-
ers. In these cases, protection relationships can be operative
between various storage servers in system 900 such that one
ormore primary storage objects from storage server 910A can
be replicated to a storage server other than storage server
910B (not shown in this figure). Secondary storage objects
can further implement protection relationships with other
storage objects such that the secondary storage objects are
replicated, e.g., to tertiary storage objects, to protect against
failures with secondary storage objects. Accordingly, the
description of a single-tier protection relationship between
primary and secondary storage objects of storage servers 910
should be taken as illustrative only.

In one embodiment, storage servers 910 include VCA con-
troller components 980 (880A, 980B). VCA controller com-
ponents 980 enable storage servers 910 to dynamically adjust
caching in system 900 in response to workload changes. In
one embodiment, VCA controller components 980 monitor
workload performance for SLO violation and/or analyze sys-
tem data to select a solution to correct the SLO violation.

FIG. 9B illustrates a distributed or clustered architecture
for a network storage system in which virtual cache appliance
management can be implemented in an alternative embodi-
ment. System 920 can include storage servers implemented as
nodes 910 (nodes 910A, 910B) which are each configured to
provide access to storage devices 952. In FIG. 9B, nodes 910
are interconnected by a cluster switching fabric 940, which
can be embodied as an Ethernet switch.

Nodes 910 can be operative as multiple functional compo-
nents that cooperate to provide a distributed architecture of
system 920. To that end, each node 910 can be organized as a
network element or module (N-module 922A, 922B), a disk
element or module (D-module 926 A, 926B), and a manage-
ment element or module (M-host 924A, 924B). In one
embodiment, each module includes a processor and memory
for carrying out respective module operations. For example,
N-module 922 can include functionality that enables node
910 to connect to client 902 via network 930 and can include
protocol components such as a media access layer, Internet
Protocol (IP) layer, Transport Control Protocol (TCP) layer,
User Datagram Protocol (UDP) layer, and other protocols
known in the art.

In contrast, D-module 926 can connect to one or more
storage devices 952 via cluster switching fabric 940 and can
be operative to service access requests on devices 950. In one
embodiment, the D-module 926 includes storage access com-

20

25

40

45

50

20

ponents such as a storage abstraction layer supporting multi-
protocol data access (e.g., Common Internet File System
protocol, the Network File System protocol, and the Hyper-
text Transfer Protocol), a storage layer implementing storage
protocols (e.g., RAID protocol), and a driver layer imple-
menting storage device protocols (e.g., Small Computer Sys-
tems Interface protocol) for carrying out operations in sup-
port of storage access operations. In the embodiment shown
in FIG. 9B, a storage abstraction layer (e.g., file system) of the
D-module divides the physical storage of devices 950 into
storage objects. Requests received by node 910 (e.g. via
N-module 922) can thus include storage object identifiers to
indicate a storage object on which to carry out the request.

Also operative in node 910 is M-host 924 which provides
cluster services for node 910 by performing operations in
support of a distributed storage system image, for instance,
across system 920. M-host 924 provides cluster services by
managing a data structure such as a RDB 928 (RDB 928A,
RDB 928B) which contains information used by N-module
922 to determine which D-module 926 “owns” (services)
each storage object. The various instances of RDB 928 across
respective nodes 910 can be updated regularly by M-host 924
using conventional protocols operative between each of the
M-hosts (e.g., across network 930) to bring them into syn-
chronization with each other. A client request received by
N-module 922 can then be routed to the appropriate D-mod-
ule 926 for servicing to provide a distributed storage system
image.

In one embodiment, node 910A includes VCA controller
980A and node 910B includes VCA controller 980B. VCA
controllers, as described above, can include monitoring com-
ponents, analysis components, or both to dynamically adjust
caching responsive to detected actual or anticipated SLO
violations. In an alternate embodiment, VCA controller 980 A
or parts of it can also be implemented within M-host 924 A,
N-Module 922A, or D-Module 926A. Similarly, VCA con-
troller 980B or components of it can be implemented within
M-host 924B, N-Module 922B, or D-Module 926B.

It will be noted that while FIG. 9B shows an equal number
of N- and D-modules constituting a node in the illustrative
system, there can be different number of N- and D-modules
constituting a node in accordance with various embodiments.
For example, there can be a number of N-modules and
D-modules of node 910A that does not reflect a one-to-one
correspondence between the N- and D-modules of node
910B. As such, the description of a node comprising one
N-module and one D-module for each node should be taken
as illustrative only.

FIG. 10 is a block diagram of an embodiment of a storage
server, such as storage servers 910A and 910B of FIG. 9A,
embodied as a general or special purpose computer 1000
including a processor 1002, a memory 1010, a network
adapter 1020, a user console 1012 and a storage adapter 1040
interconnected by a system bus 1050, such as a convention
Peripheral Component Interconnect (PCI) bus.

Memory 1010 includes storage locations addressable by
processor 1002, network adapter 1020 and storage adapter
1040 for storing processor-executable instructions and data
structures associated with a multi-tiered cache with a virtual
storage appliance. A storage operating system 1014, portions
of'which are typically resident in memory 1010 and executed
by processor 1002, functionally organizes the storage server
by invoking operations in support of the storage services
provided by the storage server. It will be apparent to those
skilled in the art that other processing means can be used for
executing instructions and other memory means, including
various computer readable media, can be used for storing

US 9,274,838 B2

21

program instructions pertaining to the inventive techniques
described herein. It will also be apparent that some or all of
the functionality of the processor 1002 and executable soft-
ware can be implemented by hardware, such as integrated
currents configured as programmable logic arrays, ASICs,
and the like.

Network adapter 1020 comprises one or more ports to
couple the storage server to one or more clients over point-
to-point links or a network. Thus, network adapter 1020
includes the mechanical, electrical and signaling circuitry
needed to couple the storage server to one or more client over
a network. Each client can communicate with the storage
server over the network by exchanging discrete frames or
packets of data according to pre-defined protocols, such as
TCP/IP.

Storage adapter 1040 includes a plurality of ports having
input/output (I/0) interface circuitry to couple the storage
devices (e.g., disks) to bus 1050 over an /O interconnect
arrangement, such as a conventional high-performance, FC or
SAS link topology. Storage adapter 1040 typically includes a
device controller (not illustrated) comprising a processor and
a memory for controlling the overall operation of the storage
units in accordance with read and write commands received
from storage operating system 1014. As used herein, data
written by a device controller in response to a write command
is referred to as “write data,” whereas data read by device
controller responsive to a read command is referred to as
“read data”

User console 1012 enables an administrator to interface
with the storage server to invoke operations and provide
inputs to the storage server using a command line interface
(CLI) ora graphical user interface (GUI). In one embodiment,
user console 1012 is implemented using a monitor and key-
board.

In one embodiment, computing device 1000 includes VCA
controller 1060. While shown as a separate component, in one
embodiment, VCA controller 1060 is part of OS 1014. VCA
controller enables computer 1000 to generate runtime perfor-
mance data related to workloads, and/or use such runtime
data to determine how to adjust dynamically adjustable cach-
ing appliances in a storage system. In one embodiment, VCA
controller 1060 compares runtime data to predefined service
level objectives to determine if sufficient resources are being
allocated to a workload. If the resource allocation is improper
as indicated by a violation of the SLO, VCA controller 1060
can implement a caching change through a VCA to correct the
violation.

When implemented as anode of a cluster, such as cluster
920 of FIG. 9B, the storage server further includes a cluster
access adapter 1030 (shown in phantom) having one or more
ports to couple the node to other nodes in a cluster. In one
embodiment, Ethernet is used as the clustering protocol and
interconnect media, although it will apparent to one of skill in
the art that other types of protocols and interconnects can by
utilized within the cluster architecture.

FIG. 11 is a block diagram of a storage operating system
1100, such as storage operating system 1014 of FIG. 10, in
which virtual cache appliance management can be imple-
mented. The storage operating system comprises a series of
software layers executed by a processor, such as processor
1002 of FIG. 10, and organized to form an integrated network
protocol stack or, more generally, a multi-protocol engine
1125 that provides data paths for clients to access information
stored on the storage server using block and file access pro-
tocols.

Multi-protocol engine 1125 includes a media access layer
1112 of network drivers (e.g., gigabit Ethernet drivers) that

10

15

20

25

30

35

40

45

50

55

60

65

22

interface with network protocol layers, such as the IP layer
1114 and its supporting transport mechanisms, the TCP layer
1116 and the User Datagram Protocol (UDP) layer 1115, A
file system protocol layer provides multi-protocol file access
and, to that end, includes support for the Direct Access File
System (DAFS) protocol 1118, the NFS protocol 1120, the
CIFS protocol 1122 and the Hypertext Transfer Protocol
(HTTP) protocol 1124. A VI layer 1126 implements the VI
architecture to provide direct access transport (DAT) capa-
bilities, such as RDMA, as required by the DAFS protocol
1118. An iSCSI driver layer 1128 provides block protocol
access over the TCP/IP network protocol layers, while a FC
driver layer 1130 receives and transmits block access requests
and responses to and from the storage server. In certain cases,
a Fibre Channel over Ethernet (FCoE) layer (not shown can
also be operative in multi-protocol engine 1125 to receive and
transmit requests and responses to and from the storage
server. The FC and iSCSI drivers provide respective FC- and
iSCSI-specific access control to the blocks and, thus, manage
exports of luns to either iISCSI or FCP or, alternatively, to both
iSCSI and FCP when accessing blocks on the storage server.

The storage operating system also includes a series of
software layers organized to form a storage server 1165 that
provides data paths for accessing information stored on stor-
age devices. Information can include data received from a
client, in addition to data accessed by the storage operating
system in support of storage server operations such as pro-
gram application data or other system data. Preferably, client
data can be organized as one or more logical storage objects
(e.g., volumes) that comprise a collection of storage devices
cooperating to define an overall logical arrangement. In one
embodiment, the logical arrangement can involve logical vol-
ume block number (vbn) spaces, wherein each volume is
associated with a unique vbn.

File system 1160 implements a virtualization system of the
storage operating system through the interaction with one or
more virtualization modules (illustrated as a SCSI target
module 1135). SCSI target module 1135 is generally dis-
posed between drivers 1128, 1130 and file system 1160 to
provide a translation layer between the block (lun) space and
the file system space, where luns are represented as blocks. In
one embodiment, file system 1160 implements a WAFL
(write anywhere file layout) file system having an on-disk
format representation that is block-based using, e.g., 4 kilo-
byte (KB) blocks and using a data structure such as index
nodes (“inodes”) to identity files and file attributes (such as
creation time, access permissions, size and block location).
File system 1160 uses files to store metadata describing the
layout of its file system, including an inode file, which
directly or indirectly references (points to) the underlying
data blocks of a file.

Operationally, a request from a client is forwarded as a
packet over the network and onto the storage server where it
is received at a network adapter. A network driver such as
layer 1112 or layer 1130 processes the packet and, if appro-
priate, passes it on to a network protocol and file access layer
for additional processing prior to forwarding to file system
1160. There, file system 1160 generates operations to load
(retrieve) the requested data from the disks if it is not resident
“in core”, i.e., in memory 1010. If the information is not in
memory, file system 1160 accesses the mode file to retrieve a
logical vbn and passes a message structure including the vbn
to the RAID system 1180. There, the logical vbn is mapped to
a disk identifier and device block number (disk, dbn) and sent
to an appropriate driver of disk driver system 1190. The disk
driver accesses the dbn from die specified disk and loads the
requested data block(s) in memory for processing by the

US 9,274,838 B2

23

storage server. Upon completion of the request, the node (and
operating system 1100) returns a reply to the client over the
network.

It should be noted that the software “path” through the
storage operating system layers described above needed to
perform data storage access for the client request received at
the storage server adaptable to the teachings of the invention
can alternatively be implemented in hardware. That is, in an
alternate embodiment of the invention, a storage access
request data path can be implemented as logic circuitry
embodied within a field programmable gate array (FPGA) or
an application specific integrated circuit (ASIC). This type of
hardware embodiment increases the performance of the stor-
age service provided by the storage server in response to a
request issued by a client. Moreover, in another alternate
embodiment of the invention, the processing elements of
adapters 1020, 1040 can be configured to offload some or all
of the packet processing and storage access operations,
respectively, from processor 1002, to thereby increase the
performance of the storage service provided by the storage
server. It is expressly contemplated that the various processes,
architectures and procedures described herein can be imple-
mented in hardware, firmware or software.

When implemented in a cluster, data access components of
the storage operating system can be embodied as D-module
1150 for accessing data stored on disk. In contrast, multi-
protocol engine 1125 can be embodied as N-module 1110 to
perform protocol termination with respect to a client issuing
incoming access over the network, as well as to redirect the
access requests to any other N-module in the cluster. A cluster
services system 1136 can further implement an M-host (e.g.,
NI-host 1101) to provide cluster services for generating infor-
mation sharing operations to present a distributed file system
image for the cluster. For instance, media access layer 1112
can send and receive information packets between the various
cluster services systems of the nodes to synchronize the rep-
licated databases in each of the nodes.

In addition, a cluster fabric (CF) interface module 1140
(CF interface modules 1140A, 1140B) can facilitate intra-
cluster communication between N-module 1110 and D-mod-
ule 1150 using a CF protocol 1170. For instance, D-module
1150 can expose a CF application programming interface
(API) to which N-module 1110 (or another D-module not
shown) issues calls. To that end, CF interface module 1140
can be organized as a CF encoder/decoder using local proce-
dure calls (LPCs) and remote procedure calls (RPCs) to com-
municate a file system command to between D-modules
residing on the same node and remote nodes, respectively.

In one embodiment, storage operating system 1100
includes a performance monitor layer 1102, which enables
the storage operating system to provide services related to
monitoring performance of workloads with respect to their
SLOs. Performance monitor layer 1102 can be implemented
as an interrupt-driven routine that operates at periodic inter-
vals to perform monitoring operations. In one embodiment,
storage operating system 1100 includes VCA solution system
1103, which enables the storage operating system to provide
services related to determining how to cure a detected SLO
violation. The services include one or more algorithms
executed to determine what possible solutions may exist, and
select one of the possible solutions for implementation. Addi-
tionally, VCA solution system 1103 can include routines to
issue commands related to instantiating and resizing VCAs.
In an alternate embodiment, components 1102 and 1103, or
parts of them, can be implemented as part of N-Module 1110,
D-Module 1150, or M-Host 1101.

10

15

20

25

30

35

40

45

50

55

60

65

24

As used herein, the term “storage operating system” gen-
erally refers to the computer-executable code operable on a
computer to perform a storage function that manages data
access and can implement data access semantics of a general
purpose operating system. The storage operating system can
also be implemented as a microkernel, an application pro-
gram operating over a general-purpose operating system,
ovum a general-purpose operating system with configurable
functionality, which is configured for storage applications as
described herein.

Flow diagrams as illustrated herein provide examples of
sequences of various process actions. Although shown in a
particular sequence or order, unless otherwise specified, the
order of the actions can be modified. Thus, the illustrated
embodiments should be understood only as an example, and
the process can be performed in a different order, and some
actions can be performed in parallel. Additionally, one or
more actions can be omitted in various embodiments; thus,
not all actions are required in every embodiment. Other pro-
cess flows are possible.

Various operations or functions are described herein,
which can be described or defined as software code, instruc-
tions, configuration, and/or data. The content can be directly
executable (“object” or “executable” form), source code, or
difference code (“delta” or “patch” code). The software con-
tent of the embodiments described herein can be provided via
an article of manufacture with the content stored thereon, or
via a method of operating a communications interface to send
data via the communications interface. A machine readable
medium or computer readable medium can cause a machine
to perform the functions or operations described, and includes
any mechanism that provides (i.e., stores and/or transmits)
information in a form accessible by a machine (e.g., comput-
ing device, electronic system, or other device), such as via
recordable/non-recordable storage media (e.g., read only
memory (ROM), random access memory (RAM), magnetic
disk storage media, optical storage media, flash memory
devices, or other storage media) or via transmission media
(e.g., optical, digital, electrical, acoustic signals or other
propagated signal). A communication interface includes any
mechanism that interfaces to any of a hardwired, wireless,
optical, or other medium to communicate to another device,
such as a memory bus interface, a processor bus interface, an
Internet connection, a disk controller. The communication
interface can be configured by providing configuration
parameters and/or sending signals to prepare the communi-
cation interface to provide a data signal describing the soft-
ware content.

Various components described herein can be a means for
performing the operations or functions described. Each com-
ponent described herein includes software, hardware, or a
combination of these. The components can be implemented
as software modules, hardware modules, special-purpose
hardware (e.g., application specific hardware, application
specific integrated circuits (ASICs), digital signal processors
(DSPs), etc.), embedded controllers, hardwired circuitry, etc.

Besides what is described herein, various modifications
can be made to the disclosed embodiments and implementa-
tions without departing from their scope. Therefore, the illus-
trations and examples herein should be construed in an illus-
trative, and not a restrictive sense.

What is claimed is:

1. A method comprising:

detecting that a metric associated with a first workload has
breached a first threshold;

US 9,274,838 B2

25

determining that the first workload and a second workload
access the same storage resources, wherein the storage
resources are associated with a storage server;

determining that the metric is impacted by the first work-
load and the second workload accessing the same stor-
age resources; and

in response to determining that the metric is impacted by

the first workload and the second workload accessing

the same storage resources,

instantiating a first virtual cache appliance; and

routing one of the first workload or the second workload
through the first virtual cache appliance, wherein
routing one of the first workload or the second work-
load through the first virtual cache appliance causes
the first virtual cache appliance to cache data associ-
ated with the storage resources.

2. The method of claim 1, wherein the first workload is
associated with a compute server.

3. The method of claim 2, wherein the first virtual cache
appliance is instantiated on the compute server.

4. The method of claim 2, wherein the first virtual cache
appliance is instantiated on a server other than the compute
server.

5. The method of claim 1, wherein the storage server com-
prises a cache separate from the first virtual cache appliance,
wherein the cache caches data associated with the storage
resources.

6. The method of claim 1, wherein the first workload is
associated with a first compute server and the second work-
load is associated with a second compute server, wherein the
method further comprises:

determining that the first virtual cache appliance cannot be

instantiated on the first compute server;

wherein instantiating the first virtual cache appliance com-

prises instantiating the first virtual cache appliance on
the second compute server in response to determining
that the first virtual cache appliance cannot be instanti-
ated on the first compute server;

wherein routing one of the first workload or the second

workload through the first virtual cache appliance com-
prises routing the second workload through the first
virtual cache appliance.

7. The method of claim 6, wherein determining that the first
virtual cache appliance cannot be instantiated on the first
compute server comprises determining at least one of:

that the first compute server does not have sufficient

resources to support the first virtual cache appliance; or
that the first workload is routed through a second virtual
cache appliance.

8. The method of claim 6, wherein determining that the first
virtual cache appliance cannot be instantiated on the first
compute server comprises determining that the first workload
is not a cacheable workload.

9. The method of claim 1 further comprising:

determining frequently accessed data associated with the

storage resources; and

writing the frequently accessed data to the first virtual

cache appliance prior to the frequently accessed data
being requested by one of the first workload or the sec-
ond workload.

10. The method of claim 1 further comprising:

determining that the first virtual cache appliance is

underutilized; and

reducing the amount of resources allocated to the first

virtual cache appliance.

5

10

20

25

30

35

40

45

50

55

60

65

26

11. The method of claim 10, wherein reducing the amount
of resources allocated comprises releasing the first virtual
cache appliance.

12. The method of claim 11, wherein releasing the first
virtual cache appliance further comprises:

identifying a plurality of virtual cache appliances as can-

didates for releasing;

calculating an impact on the metric associated with the first

workload; and
determining that the impact on the metric associated with
the first workload is within a second threshold;

wherein releasing the first virtual cache appliance is in
response to determining that the impact on the metric
associated with the first workload is within the second
threshold.

13. The method of claim 1 further comprising, in response
to determining that the metric is impacted by the first work-
load and the second workload accessing the same storage
resources, determining an estimated impact of a residual
workload and determining an impact to the metric based, at
least in part, on the impact of the residual workload, wherein
the residual workload is a workload on the storage resources
after instantiation of the first virtual cache appliance.

14. A device comprising:

a processor; and

a computer readable storage medium having program code

embodied therein, the program code executable by the
processor to cause the device to,
detect that a metric associated with a first workload has
breached a first threshold;
determine that the first workload and a second workload
access the same storage resources, wherein the stor-
age resources are associated with a storage server;
determine that the metric is impacted by the first work-
load and the second workload accessing the same
storage resources; and
in response to a determination that the metric is
impacted by the first workload and the second work-
load accessing the same storage resources,
instantiate a first virtual cache appliance; and
route one of the first workload or the second workload
through the first virtual cache appliance, wherein
routing one of the first workload or the second
workload through the first virtual cache appliance
causes the first virtual cache appliance to cache
data associated with the storage resources.

15. The device of claim 14, wherein the storage server
comprises a cache separate from the first virtual cache appli-
ance, wherein the cache caches data associated with the stor-
age resources.

16. The device of claim 14, wherein the first workload is
associated with a first compute server and the second work-
load is associated with a second compute server, wherein the
program code further comprises program code executable by
the processor to cause the device to:

determine that the first virtual cache appliance cannot be

instantiated on the first compute server;

wherein the program code executable by the processor to

cause the device to instantiate the first virtual cache
appliance comprises program code executable by the
processor to cause the device to instantiate the first vir-
tual cache appliance on the second compute server in
response to a determination that the first virtual cache
appliance cannot be instantiated on the first compute
server;

wherein the program code executable by the processor to

cause the device to route one of the first workload or the

US 9,274,838 B2

27

second workload through the first virtual cache appli-
ance comprises program code executable by the proces-
sor to cause the device to route the second workload
through the first virtual cache appliance.

17. The device of claim 16, wherein the program code
executable by the processor to cause the device to determine
that the first virtual cache appliance cannot be instantiated on
the first compute server comprises program code executable
by the processor to cause the device to determine at least one
of:

that the first computer server does not have sufficient

resources to support the first virtual cache appliance; or
that the first workload is routed through a second virtual
cache appliance.

18. The device of claim 16, wherein the program code
executable by the processor to cause the device to determine
that the first virtual cache appliance cannot be instantiated on
the first compute server comprises program code executable
by the processor to cause the device to determine that the first
workload is not a cacheable workload.

19. The device of claim 14, wherein the program code
further comprises program code executable by the processor
to cause the device to:

determining frequently accessed data associated with the

storage resources; and

writing the frequently accessed data to the first virtual

cache appliance prior to the frequently accessed data
being requested by one of the first workload or the sec-
ond workload.

20. The device of claim 14, wherein the program code
comprises further program code executable by the processor
to cause the device to:

determine that the first virtual cache appliance is underuti-

lized; and

reduce the amount of resources allocated to the first virtual

cache appliance.

21. The device of claim 20, wherein the program code
executable by the processor to cause the device to reduce the
amount of resources allocated comprises program code
executable by the processor to cause the device to release the
first virtual cache appliance.

22. The device of claim 21, wherein the program code
executable by the processor to cause the device to release the
first virtual cache appliance comprises program code execut-
able by the processor to cause the device to:

identify a plurality of virtual cache appliances as candi-

dates for releasing;

calculate an impact on the metric associated with the first

workload; and

determine that the impact on the metric associated with the

first workload is within a second threshold; wherein the
program code executable by the processor to cause the
device to release the first virtual cache appliance com-
prises program code executable by the processor to
cause the device to release the first virtual cache appli-
ance in response to a determination that the impact on
the metric associated with the first workload is within the
second threshold.

23. The device of claim 14, wherein the program code
further comprises program code executable by the processor
to cause the device to, in response to a determination that the
metric is impacted by the first workload and the second work-
load accessing the same storage resources, determine an esti-
mated impact of a residual workload and determining an
impact to the metric based, at least in part, on the impact of the

10

15

20

25

30

35

40

45

50

55

60

65

28

residual workload, wherein the residual workload is a work-
load on the storage resources after instantiation of the first
virtual cache appliance.

24. The device of claim 14, wherein the first workload is
associated with a compute server, wherein the first virtual
cache appliance is instantiated on a server other than the
compute server.

25. An article of manufacture comprising a non-transitory
computer readable storage medium having instructions
stored thereon, the instructions comprising program code to:

detect that a metric associated with a first workload has

breached a first threshold;
determine that the first workload and a second workload
access the same storage resources, wherein the storage
resources are associated with a storage server;

determine that the metric is impacted by the first workload
and the second workload accessing the same storage
resources; and

in response to a determination that the metric is impacted

by the first workload and the second workload accessing

the same storage resources,

instantiate a first virtual cache appliance; and

route one of the first workload or the second workload
through the first virtual cache appliance, wherein
routing one of the first workload or the second work-
load through the first virtual cache appliance causes
the first virtual cache appliance to cache data associ-
ated with the storage resources.

26. The article of manufacture of claim 25, wherein the first
workload is associated with a first compute server and the
second workload is associated with a second compute server,
wherein the program code further comprises program code
to:

determine that the first virtual cache appliance cannot be

instantiated on the first compute server;

wherein the program code to instantiate the first virtual

cache appliance comprises program code to instantiate
the first virtual cache appliance on the second compute
server in response to a determination that the first virtual
cache appliance cannot be instantiated on the first com-
pute server,

wherein the program code to route one of the first workload

or the second workload through the first virtual cache
appliance comprises program code to route the second
workload through the first virtual cache appliance.

27. The article of manufacture of claim 26, wherein the
program code to determine that the first virtual cache appli-
ance cannot be instantiated on the first compute server com-
prises program code to determine at least one of:

that the first computer server does not have sufficient

resources to support the first virtual cache appliance; or
that the first workload is routed through a second virtual
cache appliance.

28. The article of manufacture of claim 26, wherein the
program code to determine that the first virtual cache appli-
ance cannot be instantiated on the first compute server com-
prises program code to determine that the first workload is not
a cacheable workload.

29. The article of manufacture of claim 25, wherein the
program code further comprises program code to:

determine frequently accessed data associated with the

storage resources; and

writing the frequently accessed data to the first virtual

cache appliance prior to the frequently accessed data
being requested by one of the first workload or the sec-
ond workload.

US 9,274,838 B2

29

30. The article of manufacture of claim 25, wherein the
program code further comprises program code to:

determine that the first virtual cache appliance is underuti-

lized; and

reduce the amount of resources allocated to the first virtual

cache appliance.

31. The article of manufacture of claim 30, wherein the
program code to reduce the amount of resources allocated
comprises program code to release the first virtual cache
appliance.

32. The article of manufacture of claim 31, wherein the
program code to release the first virtual cache appliance com-
prises program code to:

identify a plurality of virtual cache appliances as candi-

dates for releasing;

calculating an impact on the metric associated with the first

workload; and

determine that the impact on the metric associated with the

first workload is within a second threshold;

10

15

30

wherein the program code to release the first virtual cache
appliance comprises program code to release the first
virtual cache appliance in response to a determination
that the impact on the metric associated with the first
workload is within the second threshold.

33. The article of manufacture of claim 25, wherein the
program code further comprises program code to, in response
to a determination that the metric is impacted by the first
workload and the second workload accessing the same stor-
age resources, determine an estimated impact of a residual
workload and determining an impact to the metric based, at
least in part, on the impact of the residual workload, wherein
the residual workload is a workload on the storage resources
after instantiation of the first virtual cache appliance.

34. The article of manufacture of claim 25, wherein the first
workload is associated with a compute server, wherein the
first virtual cache appliance is instantiated on a server other
than the compute server.

#* #* #* #* #*

